M17 & OpenRTX

Silvano Seva - IU2KWO

10th February 2024

whoami

- Also known as Redman
- Born and living in Milan, Italy
- Ham radio operator since 2017 as IU2KWO
- Firmware developer by profession (and by passion)
- Co-founder and developer of OpenRTX
- Member of the M17 team since 2021

M17 is a community of open source developers and radio enthusiasts. We're building understandable systems in support of the hackers and experimenters' history of ham radio.

Main goals:

- an open source protocol for digital radio
- open source software
- open source hardware


Brief history

- 2019:
 - first experiments with Codec2, STM32 and RFM26W module
 - first prototype of TR-9, an M17-compatible handheld
- 2021:
 - first ARDC grant
 - ARRL's Technical Innovation Award
 - MMDVM and OpenWebRX start to support M17
- 2022:
 - Module17 modem board by Mathis DB9MAT
 - OpenRTX supports M17 on MD-(UV)380
- 2023:
 - First OpenHT prototype

Technical specs

- 9600 bps 4FSK modulation (4800 symbols/second)
- 12.5kHz channel spacing
- packet and stream mode
- voice transport over stream, Codec2 at 3200 bps (voice only) or 1600 bps (voice + data)
- callsign-based ID
- 16 Channel Access Numbers
- optional AES encryption or XOR scrambling

Physical layer

- Complete transmission:
 - preamble, at least 40ms of alternating +3/-3 symbols
 - one of more frames, of 40ms each
 - End of Transmission marker
- Frames:
 - 8 symbols of sync burst (frame specific)
 - 368 symbols of actual data

Link Setup Frame

SRC	DST	TYPE	META	CRC
48 bit	48 bit	16 bit	112 bit	16 bit

- First frame following the preamble for both packet and stream
- TYPE field:
 - stream/packet indicator
 - data type indicator
 - encryption type and subtype
 - Channel Access Number
- META field:
 - application specific content (ext. callsign, GNSS data, ...)
 - AES encryption nonce

Stream

LICH	FN	DATA
48 bit	16 bit	128 bit

- No limit to the number of bytes sent
- Link Information Channel (LICH):
 - 40-bit chunk of the LSF + 3-bit counter
 - allows to re-build the LSF in case of late entry
- Frame number:
 - free-running counter from 0 to 0x7FFF
 - most significant bit used as EoS marker

Packet

S. Seva

DATA	EOF + CNT
200 bit (25 byte)	1 bit + 5 bit

- Up to 823 bytes of data can be sent in a single packet
- A transmission consists of:
 - LSF as first frame
 - 1 to 33 packet frames
- Net throughput between 3kbps and 4.7kbps

IP networking

- Primarily designed to allow repeater/hotspot interconnection
- IP-capable devices can connect directly to the nework
- Network nodes are called "reflectors":
 - up to 26 "modules" per reflector
 - all the clients in the same module communicate together
 - is possible also to connect modules of different reflectors

M17 hardware

Module17:

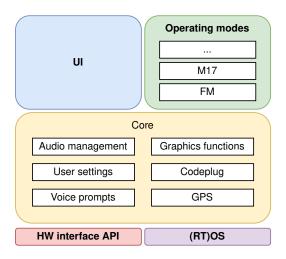
- an M17 modem to be used with already existing radios
- currently only for voice, in the future also for data
- revision 1.0 almost ready

OpenHT:

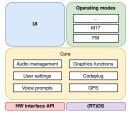
- SDR handheld transceiver: FPGA + STM32
- currently a prototype, < 25mW RF output

${\sf OpenRTX}$

- An open-source firmware for ham radio devices
- Designed to be:
 - modular
 - easily portable to new devices
 - easily extendable to new protocols
- Currently supporting FM and M17 modes


Timeline

- March 2020: project starts as a port of OpenGD77 to the TYT MD-380
- September 2020: original idea abandoned, "official" beginning of OpenRTX
- January 2021: first alpha release with working FM on the TYT MD-380
- February 2021: first TX tests of M17 mode on the MD-380
- April 2021: support for GD-77, DM-1801 and MD-UV380
- May 2022: release v0.3.3 brings full support for M17 voice transmission
- November 2022: implemented voice prompts for vision impaired operators
- October 2023: support for Lilygo T-TWR Plus (and various technical improvements)
- More to come ...


Supported devices

- TYT MD-380/Retevis RT3 (FM, M17)
- TYT MD-UV380/Retevis RT3s (FM, M17)
- Radioditty GD-77 (FM)
- Baofeng DM-1801 (FM)
- Module17 (M17)
- Lilygo T-TWR Plus (FM)

Internals

- Interface with the operating system:
 - thread management done using the Posix API
 - all the remaining parts use the standard C library
 - an RTOS is preferred on embedded devices
- Interface with the hardware:
 - APIs for display, keyboard, audio, radio and nonvolatile memory
 - "platform" API for device initialization and other stuff (LEDs, ...)
 - more devices can share a single API implementation (e.g. the display driver for MDx)

Internals

- User interface:
 - currently a "standard" GUI + an ad-hoc GUI for Module17
 - $\bullet\,$ you can write your own from scratch, if you want
 - future plans to make the standard GUI scriptable/expandable
- Operating modes/protocols:
 - C++ here, but simple
 - all the operating modes are subclasses of a generic "OpMode" class
 - pre-defined functions: enable, disable, periodic update (33Hz), squelch status
 - still some work to do: functions to get/set mode-specific data (e.g. configuration)

	Operating modes				
u					
U	M17				
	FM				
Core					
Audio management	Graphics functions				
User settings	Codeplug				
Voice prompts	GPS				
HW interface API	(RT)OS				

M17 support

- First work done on the TYT MD-380, then extended to the MD-UV380
- Everything is handled in the MCU
- Hardware must have the following connections:
 - mic to MCU
 - RF stage to MCU, DC to ${\sim}3kHz$
 - MCU to speaker
 - MCU to RF stage, DC to ${\sim}3kHz$
- Current limitations:
 - you need to mod the radio hardware
 - the MCU has to be powerful enough
 - Codec2 uses floating point math

Codeplug

- Trying to make something which:
 - is open and free
 - supports common ham radio needs (direct comm, repeaters, hotspots)
 - is portable across devices, both for end users and developers
- Currently WIP, an RFC open at https://github.com/OpenRTX/openrtx.github.io/pull/32
- Technical details:
 - binary format
 - up to 65'535 channels, contacts and banks (like DMR zones)
 - currently supporting FM, DMR and M17 operating modes
- May become a separate entity from the firmware

https://openrtx.org https://m17project.org

s.seva@openrtx.org